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Abstract

With recent improvements in fabrication processes, many structural components and solid materials are being de-
signed at microstructural scales to provide specific macroscopic response characteristics. Optimal macroscopic prop-
erties and decreased susceptibilities to failure may be achieved by designing media with strictly periodic microstructures.
Averaging and homogenization techniques, used to estimate the macroscopic properties of structured media, also are
formulated on the basis of assumed microstructural periodicity. Few structures or materials, however, possess perfectly
periodic microstructures. In the present work, the influence of perturbations in microstructural periodicity on the
macroscopic response of structured media is investigated and quantified by examining the behavior of discrete media
with both periodic and nearly periodic microstructures. The idealized macroscopic response of media with perfectly
periodic microstructures is compared to the response obtained after perturbations in geometry and material properties
are introduced into the models at the microstructural scale. Analysis shows that, for specific, well-defined classes of
discrete media, the macroscopic properties are influenced only to second order in the perturbation amplitude parameter.
In certain circumstances, however, the effects of these perturbations can become substantially more pronounced —
demonstrating the limits of applicability of analysis techniques that assume that an underlying periodic microstructure
exists for the discrete media under consideration. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many structural components and essentially all solid materials possess some degree of relevant under-
lying microscopic structure. Large components such as multi-bay trusses and frames and materials such as
honeycombs and structural composites are just a few examples of media with tailored microstructures that
are used widely in engineering applications. Naturally, for these types of structures and materials, the
mechanical response at the microstructural scale influences the corresponding macroscopic behavior. Often,
small defects or irregularities in the microstructures will significantly and detrimentally affect not only the
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macroscopic response of these media, but ultimately the onset of failure as well. With recent improvements
in fabrication processes, however, many structural components and solid materials now are being designed
at microstructural scales to provide improved, or even desired, macroscopic response characteristics. For
example, in the interest of producing structural components with optimal macroscopic properties and
decreased susceptibilities to failure, cellular materials, such as metallic and ceramic honeycombs, often are
designed to possess strictly periodic microstructures.

Few, if any, of the structural components and solid materials that are used in actual engineering
applications possess perfectly periodic microstructures. And despite the additional simplicity that even
assumed microstructural periodicity may offer to analysts, obtaining a fully resolved description of the
mechanical response at the microstructural scale for these types of structures and materials is not, in
general, analytically tractable or computationally feasible. Consequently, averaging and homogenization
techniques are used extensively to estimate the macroscopic properties and obtain continuum-scale de-
scriptions of the mechanical response for both continuous and discrete, structured media. These analytical
techniques, which are formulated on the basis of assumed microstructural periodicity, most often are
employed in applications involving media with nearly periodic microstructures, but often, in applications
involving structures and solids with highly irregular or even random microstructures as well.

The development of analytical techniques for estimating the macroscopic properties of structured media
has taken varied paths over the past several decades, and the literature is replete with examples of the
various approximation methods that have been developed. In general, these analytical techniques fall into
one of two broad categories. The first category includes methods for estimating the macroscopic properties
of solid materials with random distributions of microscopic heterogeneities. For these techniques, the
general concept of a representative volume element (RVE) that was introduced by Hill (1963) and Hashin
(1964) is used to relate the macroscopic properties associated with an infinitesimal material neighborhood
to the parameters that characterize the geometry and the properties of the constituents that compose the
material neighborhood. Periodic boundary conditions are applied to the RVE, and the RVE must be
statistically representative of the surrounding material. Using this approach, general averaging theorems
have been developed for estimating the macroscopic properties of heterogeneous materials comprized of
constituents that admit stress or strain potentials. Estimates of the macroscopic moduli and compliances of
linear-elastic composite materials, using uniform strains and uniform stresses, are due to Voigt (1889, 1928)
and Reuss (1929), respectively. These works center attention on the behavior of polycrystals, but the ap-
plications are much more broad. The fact that the Voigt and Reuss estimates actually provide bounds on
the macroscopic properties has subsequently been shown by Hill (1952). Special averaging procedures,
referred to as self-consistent methods, have been developed since by Hill (1965) and Budiansky (1965) for
predicting the macroscopic properties of composite materials. Similarly, upper and lower bounding tech-
niques for the macroscopic elastic moduli of structured media have been developed by Hashin and
Shtrikman (1962a,b). The Hashin—Shtrikman variational principle has been generalized further by Willis
(1977), and the general bounding procedure has been revisited and extended to include nonlinear con-
stitutive behavior (see, e.g., Talbot and Willis, 1985, 1997; Castaneda, 1996; Castaneda and Willis, 1995).

The second category of analytical techniques includes methods for estimating the macroscopic properties
of structural components with periodic microstructures and solid materials with periodic arrays of mi-
croscopic heterogeneities. As opposed to the concept of the statistically representative RVE, here the
smallest representative microsection of the specimen, referred to as the unit cell, is used to approximate the
macroscopic properties. For these techniques, it is assumed that the structural component or solid material
comprises an infinite, spatially periodic collection of such unit cells. The macroscopic strain and stress fields
in these media can be related to the parameters that characterize the geometry and the properties of each of
the individual constituents, and in this manner, the macroscopic elastic moduli and compliances can be
defined. An idealized elastic solid with periodic distributions of heterogeneities is “homogenized” by in-
troducing appropriate periodically distributed eigenstrains or eigenstresses. Using this approach, the pe-
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riodic elastic moduli are replaced by reference constant elastic moduli and an appropriate periodic
eigenstrain field. The uniform solid with constant elastic moduli is referred to as the equivalent homogeneous
solid. A detailed account of the formulation in terms of a Fourier series approach is given in Nemat-Nasser
and Hori (1993). Asymptotic techniques applied to homogenization methods are provided by Sanchez-
Palencia (1974) and Bensousson et al. (1978).

In many structural components and composite materials the underlying microstructures can be well
approximated as periodic. The aforementioned averaging and homogenization techniques, therefore, can
be directly applied to such media — providing approximate values for the macroscopic properties. In ad-
dition, estimates of the macroscopic properties of structured media formed on the basis of assumed mi-
crostructural periodicity can provide limiting values for cases in which actual periodicity may be an
idealization. Consequently, for applications involving media with highly irregular, and even random mi-
crostructures, these traditional averaging and homogenization techniques often are employed.

These two categories of approximation techniques represent media with microstructures at opposite ends
of the possible spectrum, that is, those with statistically random microstructures and those with perfectly
periodic microstructures, respectively. And while many solid materials with statistically random micro-
structures do exist, manufacturing tolerances, material impurities, defects, and damage preclude the fab-
rication of structural components and solid materials with perfectly periodic microstructures. From a
design-engineering standpoint, an important issue exists regarding the quantification of the difference be-
tween the macroscopic properties predicted by techniques that assume microstructural periodicity and
the actual properties of the nearly periodic solid or structure. Additionally, to the best of the author’s
knowledge, very little attention, if any, has been devoted to the development of approximation techniques
that can be applied specifically to media with microstructures that lie somewhere between the extremes of
statistical randomness and strict periodicity. A fundamental aspect of micromechanics, therefore, should
focus on the issues concerning the influence of perturbations (or imperfections) in microstructural perio-
dicity on the macroscopic response of structured media.

These issues, which appear to be neglected in traditional micromechanics analyses, are presently in-
vestigated by exploring the macroscopic response of discrete media (e.g., trusses, frames, cellular materi-
als, etc.) with both periodic and nearly periodic microstructures. A nonisotropic, nonlinear-elastic truss
structure and an initially isotropic, elasto-plastic honeycomb material are chosen as two particular models
for study. The macroscopic response for each of these structured media is obtained first for the case when
the underlying microstructures are modeled as perfectly periodic. This idealized behavior is then compared
to the response obtained for the same models after perturbations in periodicity are introduced at the mi-
crostructural scale through imperfections in geometry and material properties. The shapes of the pertur-
bations are arbitrary and the magnitudes are characterized by perturbation amplitude parameters. The
results of detailed analysis, the main points of which are highlighted by several numerical examples
involving the two models, show that, for specific, well-defined classes of discrete media, macroscopic
quantities such as the strain energy density, from which the macroscopic stresses and the macroscopic
incremental moduli are derived, are influenced only to second order in the perturbation amplitude pa-
rameter. In other equally well-defined circumstances, however, the effects of these perturbations can be-
come substantially more pronounced — demonstrating the limits of applicability of analysis techniques that
ideally assume that an underlying periodic microstructure exists for the discrete media under consideration.

2. Media with perfectly periodic microstructures
Before the macroscopic response of structural components and solid materials with nearly periodic

microstructures can be examined, the macroscopic properties of media with perfectly periodic micro-
structures should be defined. General expressions for the macroscopic properties of media with periodic



7384 M.W. Schraad | International Journal of Solids and Structures 38 (2001) 7381-7407

microstructures are necessary for quantifying the influence of perturbations in microstructural periodicity
on the corresponding idealized macroscopic behavior. In this section, general descriptions are provided for
a class of discrete, structured media that are relevant to this investigation. Suitable micromechanical models
are used to represent this class of discrete structures and materials, and these models are employed in the
determination of the macroscopic response of the corresponding perfect specimens. The concepts of strain,
stress, and strain energy are defined at the microstructural scale, and all underlying modeling assumptions
are outlined. Mathematical expressions for the idealized macroscopic properties also are provided. These
expressions are used later in the analysis to provide a standard by which comparison of the macroscopic
properties for media with nearly periodic microstructures can be made.

2.1. Model descriptions

There are many types of engineering structures and materials that ideally possess discrete, periodic
microstructures. Consider, for example, the structured media shown in Fig. 1a. Here, a two-dimensional
truss (the joints and members of which do not support bending moments) and a two-dimensional frame
(the joints and members of which do support bending moments) serve as examples of spatially periodic
structures, whereas two cellular honeycombs with different microstructural geometries serve as examples of
spatially periodic materials. Ideally, each of these specimens is a repetitive assembly of the corresponding
smallest representative microsection or unit cell, as shown in Fig. 1b. The size of each unit cell is char-
acterized by a microstructural length scale, 4, which in three dimensions, is typically set equal to the cube
root of the unit cell volume. Similarly, the size of the overall structure or material specimen is characterized
by a macroscopic length scale, H, which is typically set equal to the cube root of the overall structural or
specimen volume. A geometric scale parameter, ¢, may be defined then as the ratio of these characteristic
length scales (i.e., e = #/H). As shown in previous studies (see Schraad and Triantafyllidis, 1997a,b; Tri-
antafyllidis and Schraad, 1998), and as will be illustrated in the present investigation, the macroscopic
response and the onset of failure in structured media may be strongly affected by this geometric scale
parameter.

The macroscopic stress—strain response for media with periodic microstructures may be obtained
by examining the behavior of suitably representative micromechanical models. For the class of discrete
structures and materials presently under consideration, each representative microsection or unit cell is
idealized as a collection of one-dimensional structural elements (e.g., springs, rods, beams, etc.). For
purposes of illustration, the micromechanical models shown in Fig. la are all two dimensional. The
forthcoming analysis, however, is applicable to discrete media with general, three-dimensional micro-
structures. Since the idealized models are spatially periodic, a given structural element of a particular unit
cell necessarily possesses the identical geometry and material properties, and therefore, under homogeneous
deformations, behaves identically to all of the corresponding elements in each of the remaining unit cells
throughout the entire specimen. Naturally, as a result, the strains and stresses at the local material point
scale within each structural element are spatially periodic as well under these conditions.

For the moment, consider each structural element within a particular unit cell to be a general, three-
dimensional, solid body. Whenever changes take place in the relative positions of the parts of a solid body,
that body is said to be strained. Many different strain measures exist for describing the continuous change
of configuration of a solid body from one state to another (e.g., Green’s, Almansi’s, and Cauchy’s strain
tensors). Despite the differences among the various strain measures, they are all functions of the local
material displacement field, which in turn, is a function of position within the given solid body. The
particular choice of strain measure is immaterial to the present investigation, and so, let the components of
the strain tensor at a given material point within the solid body be denoted by ¢;, where

€ = Eij(u(gv b, ¥)). (1)
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Fig. 1. Examples of: (a) spatially periodic structures and materials; and (b) the corresponding smallest representative microsections or
unit cells.

Here, the vector u(6, ¢, ) is the displacement field at the material point in question, and 6, ¢, and
represent the components of the initial position vector (i.e., the position in the reference or undeformed
configuration) of the given material point in some convenient curvilinear coordinate system.

It is assumed that strain energy density functions, W, exist for the solid materials under consideration,
and recall that, by definition, strain energy density functions exist for hyperelastic materials (see Noll,
1955). In the present analysis, thermal considerations are neglected, and therefore, the strain energy density
function is assumed to be an analytic function of the strain tensor components alone. One physical case for
which such a strain energy density function exists is when the changes that take place in a solid body are
reversible and isothermal. Another physical case is when these changes are reversible and isentropic. These
two possibilities cover many important practical applications within the fields of solid and structural
mechanics. Under adiabatic conditions, W may be interpreted as the internal energy per unit mass, whereas
under isothermal conditions, W may be identified with the free energy per unit mass. The corresponding
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strain energy density functions under these two conditions are, in general, different functions. In either of
these situations, however, the temperature does not appear explicitly in the functional form of W. A strain
energy density function may exist in other thermal conditions. In these situations, however, it becomes
necessary to exhibit the temperature dependence in the form of the strain energy density function. For a
more detailed discussion on the existence of strain energy density functions, see Fung (1965) and Green and
Zerna (1968).

With the existence of a strain energy density function under isothermal or adiabatic conditions, attention
necessarily is restricted to materials that exhibit elastic (i.e., reversible) behavior — for at least some finite
range of deformation in the neighborhood of the stress-free state. By definition, the state of stress in an
elastic body is a unique function of the state of strain. It is possible then to choose the components of the
strain tensor as the independent state variables and to express the strain energy density function as an
analytic function of the strain tensor components alone (of course, W is also a function of the material
properties — as will be shown directly). The stress tensor components, o;;, then are derivable from the strain
energy density function:

ow
;i — .
] aeij

(2)

Consider now a general constitutive law for nonlinear-elastic materials under isothermal or isentropic
conditions. The corresponding strain energy density function can be expanded asymptotically (i.e., in a
Taylor series) about the stress-free state to obtain

W = A+ Bje;; + 5Ciicij€n + EDijkimn€ii€i€mn + - (3)

where A4 = W(E,‘j = 0), B,’j = dW(ﬁij = 0)/d€ij; Cijkl = dZW(E,‘j = 0)/d6,‘jd€k1, Dijk]mn = d3 W(Eij = 0)/
de;;degde,,, etc. are the constant properties that characterize the stress—strain response of the material in
question. Consequently, the components of the stress tensor take on the following form:

_ 1
6;; = Bij + Cijri€i + 3Dijktmn€xi €on + -+ 4)

Without loss of generality, the strain energy density function may be defined to be identically equal to zero
when all of the strain tensor components are equal to zero. As a result, 4 = 0. Furthermore, under iso-
thermal or isentropic conditions, the stress tensor components must all be identically equal to zero when all
of the strain components are equal to zero. As a result, B; = 0, and therefore, the strain energy density
function and the stress—strain relation take on the following forms, respectively:

_ 1 1
W= 5Lijki€ij€ki + gDijklmnEijelemn + - (5)
and
— 1
0ij = Cijki€kl + EDi/klmneklemn + - ) (6)

where C;;; are now recognized as the familiar linear-elastic moduli and Djj,.,, etc. are higher-order elastic
moduli that characterize the nonlinearity in the material response.

It is important to note at this point that the forthcoming analysis is based on the existence of a strain
energy density function for the materials under consideration. And, as previously mentioned, this as-
sumption necessarily restricts attention to materials that exhibit elastic behavior for at least some range of
deformation. This does not mean, however, that the analysis is restricted to materials that only behave
elastically. When a material is strained beyond the elastic limit, the constitutive relations outlined in Egs. (5)
and (6) may be augmented, for example, with a yield condition and a plastic flow rule to obtain an elasto-
plastic constitutive law. Other inelastic constitutive laws also may be considered, and various models that
account for the accumulation of continuum material damage (e.g., porosity) may be included in the ma-
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terial response description. Once the material behavior leaves the elastic range, however, the response is no
longer reversible, and hence, a strain energy density function no longer exists. The forthcoming analysis,
therefore, applies to materials that have not been strained beyond their elastic limit and have not accu-
mulated any amount of continuum material damage.

Now, recall that the micromechanical models currently under consideration comprise collections of one-
dimensional structural elements (generalization of the forthcoming analysis to solid materials with con-
tinuum microstructures will appear in a sequel to this work). Each element within a given model is assumed
to be a hyperelastic solid. Consider a given structural element of a particular unit cell of an arbitrary
micromechanical model. Label this element ¢, and denote the corresponding strain, stress, strain energy,
etc., with the superscript e. For general extensional and bending deformations of the structural element, the
only nonnegligible stress component is the axial stress. Denote this stress component by ¢¢ and the cor-
responding axial strain component by €°. That is, the element strain and element stress are given, respec-
tively, by

e =eW(0,h,¢) and o = C +1D(e) +- -, (7)
and therefore, the element strain energy density function is given by
e =109 +1D°(e) + -, (8)

where u¢ is now the local displacement field of the element in question. Here, C¢ = Cyy; is the lone linear-
elastic material constant and D° = Djjy111, etc. are the higher-order elastic material constants, which
characterize not only the nonlinearity in the response of the element in question, but the nonlinearity in the
response of the entire micromechanical model as well.

The total strain energy stored in a given structural element, £, is simply the integral of the strain energy
density taken over the volume of the element. That is,

gf:/ WedV:/ Loy v Loy +--|ar, ©)
e ve |2 6

where V¢ is the total volume of the structural element in question. Now, since only one-dimensional
structural elements are being considered, let 4° and /¢ denote the cross-sectional area and the length of the
structural element, respectively. Then, the relation for the element strain energy becomes

°
ge:// lce(ee)2+lD6(ee)3+... dsd4, (10)
e Jo |2 6

where s denotes the arc-length parameter for the structural element. Here, without loss of generality, it is
assumed that the cross-sectional area is constant along the length of the structural element and that the
material properties are constant throughout the element volume. If this were not the case, then the cross-
sectional area, 4¢, would be a function of s and the material properties, C¢, D¢, etc. would be functions of s,
v, and z. These assumptions maintain the discrete nature of the forthcoming analysis and do not affect the
corresponding results.

Now, since the element strain is a function of the local element displacement field, the element strain
energy assumes the following functional form:

6 = §(4°, 1(X°), C¢, DF, ... u), (11)

where X° denotes the vector of element end positions (e.g., in three dimensions, the vector X° has six
components — three components of the position vector for each end of the element). In other words, the
element strain energy depends on the geometry of the element, the element material properties, and the
deformed configuration of the element.
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2.2. Macroscopic properties

Of primary interest is the development and appropriate use of macroscopic constitutive laws for
structured media that are based upon mechanical response occurring at microstructural scales. Tra-
ditionally, continuum descriptions, obtained through macroscopic averaging and homogenization tech-
niques, are used to model the macroscopic response of structured media. For the structures and materials
with perfectly periodic microstructures presently under consideration, definitions for the macroscopic
properties are based on a definition for the macroscopic strain energy density.

The macroscopic strain energy density, denoted by W, is defined to be the volume average of the total
strain energy stored in the specimen, denoted by &. This quantity, in turn, is simply equal to the sum of the
element strain energies, ¢, defined in Eq. (10). That is,

W_l(g/_l N.
==y 2

where N. is the total number of unit cells in the entire micromechanical model and N, is the number of
structural elements per unit cell. The last equality in Eq. (12) holds, since for periodic specimens, every unit
cell responds identically to a given homogeneous macroscopic deformation. Naturally, this implies that

¢ =constant Ve € {1,...,N.}, (13)

Ne

ve NC - e
2| = (12

e=1

and consequently, the macroscopic response of periodic media can be determined from the behavior of the
corresponding unit cells.

Several different macroscopic stress tensors, such as Lagrange’s stress tensor and the first and second
Piola—Kirchhoff stress tensors, can be derived from the macroscopic strain energy density. The forthcoming
analysis is independent of the choice of stress measure, so as an example, consider the nonsymmetric, first
Piola—Kirchhoff stress tensor, I, which is defined by

W N, = 08° ”
~OF H}4& OF° (14)
Here, F is the macroscopic deformation gradient tensor, which for homogeneous deformations, may be
determined from the prescribed displacements on the boundary of the specimen. Similarly, the macroscopic
incremental moduli tensor, L, which relates the increments in the stress tensor components, I1;;, to the
increments in the deformation gradient tensor components, £, is defined by

PW N, I 6° s
- OFOF H3 £~ OFOF (15)

In the next section, the influence of perturbations in microstructural periodicity on the idealized mac-
roscopic properties, W, I1, and L, is examined and quantification of this influence is pursued analytically.
The idealized response obtained using these macroscopic property definitions is compared then to the
behavior obtained numerically for two models with small perturbations in the periodicity of the underlying
microstructures.

3. Media with nearly periodic microstructures

In the previous section, relations were developed for the macroscopic stress and the macroscopic in-
cremental moduli tensors for a class of structured media with discrete, three-dimensional, periodic mi-
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crostructures. The structures and materials under consideration are assumed to exhibit hyperelastic be-
havior (i.e., it is assumed that a strain energy density function exists) for at least some range of deformation
in the neighborhood of the stress-free state. Also, since these media are discrete, it is also assumed that the
microstructures can be modeled accurately as collections of one-dimensional structural elements. In this
way, the macroscopic strain energy density, on which the definitions for the macroscopic properties are
based, can be defined as a volume average of the sum of the individual element strain energies. Further-
more, the periodic nature of the underlying microstructures permits evaluation of the macroscopic response
of each specimen by restricting attention to the behavior of a single unit cell.

Of course, few of the structural components and solid materials used in actual engineering applications
possess perfectly periodic microstructures. Manufacturing tolerances and damage induced during fabri-
cation processes inevitably result in, at least, small imperfections in the underlying microstructural
geometries. Similarly, impurities and continuum damage in the parent materials necessarily lead to
imperfections in the properties that govern the solid material response. As a result, structured media can
possess, at best, nearly periodic microstructures. Consequently, the periodic micromechanical models are
idealizations, and the macroscopic properties that are determined from analyses that are based on the
assumption of strict periodicity can only provide approximations or limits to the macroscopic properties of
the actual media with nearly periodic microstructures. To obtain a more realistic description of the mac-
roscopic response for these types of structural components and solid materials, consideration must be given
to the imperfections that exist in the underlying microstructures and to the corresponding influence of these
imperfections on the macroscopic properties of the media in question.

3.1. Perturbations in microstructural periodicity

With the aforementioned issues regarding microstructural imperfections in mind, consider an arbitrary
structural element of an arbitrary unit cell for any particular micromechanical model with an initially
periodic microstructure. Next, consider the following geometric and material property perturbations, which
naturally destroy the original periodicity of the model. The perturbed cross-sectional area for this structural
element is given by

AS=A°(1 4 0r%), where — 1< <. (16)
Similarly, the components of the perturbed element end position vector are given by

X =X+ 0hrf = X, + eHr¢, where —1</¢<1 fori=1,2,...,6. (17)
And finally, the perturbed material properties for this structural element are given by

Ce:é"g(l—kérec)7 D¢ = Df(1 4 0r%), etc., where —1<r8,r%,... <1. (18)

Here, A¢, X, C¢, D¢, etc. are the cross-sectional area, the end positions, and the material properties of the
element in the perfectly periodic configuration, respectively; d is the perturbation amplitude parameter; and
r4, ¥, re, 15, etc. are the parameters that characterize the shapes of the microstructural perturbations in
geometry and material properties. In the previous section, it was assumed that the cross-sectional area of
each structural element remained constant along the element length and that the material properties were
uniform throughout the volume of each element. Without loss of generality, this assumption is retained
here. If the element area, 4¢, was allowed to vary along the length of the element and the material prop-
erties, C¢, D¢, etc., were allowed to vary spatially within each element, the forthcoming analysis would
become slightly more complex, while the results of the analysis would remain unchanged. Since the
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micromechanical models are constructed with collections of one-dimensional elements, this assumption
maintains the discrete nature of the analysis.

The preceding geometric and material property perturbations naturally lead to a displacement field that
also depends on the perturbation amplitude parameter. That is,

u = u(J). (19)

The dependence of the geometry, the material properties, and the displacements on the perturbation am-
plitude parameter dictates that the macroscopic properties of this particular micromechanical model de-
pend on ¢ as well. The remainder of this section, therefore, is devoted to quantifying the effects of these
microstructural perturbations on the macroscopic properties of structured media.

3.2. Influence on the macroscopic strain energy density

Since for hyperelastic materials the macroscopic stress tensor, II, and the macroscopic incremental
moduli tensor, L, can be defined in terms of the macroscopic strain energy density, W, it is possible to
quantify the influence of perturbations in microstructural periodicity on these macroscopic properties by
examining the corresponding effect on W. This is accomplished most easily by examining the different terms
in an asymptotic expansion of the strain energy density, which is taken about the periodic solution (i.e.,
about the point 6 = 0). The expansion of the macroscopic strain energy density is given by

dw o d*w

W(o,u(0)) = Wl|s;_y+0—< - —

( ( )) ‘070—"_ do 0_:0+ 2 déz

where the total derivative in the first-order term of the expansion may be expressed as

aw _ow oW du o
ddo 06 ou do’

and the total derivative in the second-order term may be expressed as
cw _Fw W du w duw (FW  du FW du
ds> 08> 0uds dd  om ds° O0udd dé Oudu/ do’

These relations may be simplified considerably by examining the equilibrium equations of the nearly
periodic specimen. The most compact form of the equilibrium equations are given by
Gl

a-éu:o inV; and o6u=0 ondV. (23)

Here, Vis the total volume of the specimen, 0V denotes the specimen boundary, and Ju is any kinematically
admissible field. Recall that the perturbed element end positions are given by Eq. (17), and therefore, the
displacement component, u;, corresponding to the end position of an element, e, which lies on the boundary
of the specimen, is prescribed by

+0(d), (20)

=0

(22)

o

u,i = (F}d - Ik,'))(ig = (F;a — I]d)(X[e + 58Hrf). (24)
Consequently,
1 duf
7 dé“:s(Fk,-—Ik,-)erO on oV as ¢ — 0 (25)
and
2 e
Uy onor. (26)
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Since du¢/dd and d*u¢/dd* are kinematically admissible fields, equilibrium considerations dictate that the
following relations hold:

1 06 du . 1 du
Ea-£—>01nV, and ﬁ£—>0 on 0V ase—0 (27)
and
2 2
a—g-d—g:O in V; and d_121:0 on OV. (28)
ou do dé

As a result, for media with a characteristic microstructural length scale that is small relative to the overall
structural dimensions (i.e., when # < H = ¢ — 0), the following relations can be developed:

oW du 1 06 Qu ow d’m 1 36 d’u

—_— _— —_— ¢ ——— —_—_— = ¢ — 2
0 and ou do* H3 ou d§? (29)

du do H'ou 36
Furthermore, by taking the derivative of the equilibrium equations with respect to the perturbation
amplitude parameter, the following relation can be obtained:

0*& +d_u. 0*&
Oudd dé Oudu

>~5u:0 in”; and Jdu=0 on 0V. (30)

Therefore, when & < H, the following additional relation also can be developed:

*W du W\ du
(auaa+c1(3’auau> P (31)

which leads to
o*W du du *W du

00 d5  do oudw do

The inequality in Eq. (32) holds for deformations occurring prior to initial bifurcation in the principal
equilibrium solution. In these situations, the potential energy stored in the specimen at equilibrium is a
minimum and is stable, and therefore, the incremental stiffness matrix, 9’4 /Oudu, must be positive definite
(see, for example, Love (1944)).

Thus, for nearly periodic media with 4 < H, the derivatives in the first- and second-order terms in the
expansions of the macroscopic strain energy densities simplify considerably. Using the relations developed
in Egs. (29), (31), and (32), the derivatives given in Egs. (21) and (22) reduce, respectively, to

0. (32)

dw ow

&b % (33)
and

de_62W+ W d_u where (ilid d_u< (34)

ds?  8s* oudd ds’ oudo do '

Now, Egs. (33) and (34) may be simplified further by considering the influence of perturbations in
microstructural periodicity on the individual terms remaining in the expansions. Therefore, consider the
first-order term, evaluated at the point 6 = 0. This term may be rewritten as

AN P
:ﬁzz[aa

=0 e=1 =1

aw
dé

o
00

5_0]; (35)

0=0
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Recalling Eq. (11), it can be seen that, for nearly periodic media, each element strain energy assumes the
following functional form:

&= 6°(6,u(8)) = 6°(4°(9), (X7 (9)), C(8),D°(6), - ..., u;(9)). (36)

Therefore, the partial derivative of the element strain energy with respect to the perturbation amplitude
parameter is given, via the chain rule, by

06° 06 04° n 08¢ ol° 0Xg 0&° oCe n 0&° oD¢ n
05 04¢ 95  0lc d0X¢ 35  0Ce 35  OD¢ 3o ’

(37)

where summation is implied on the repeated index i.

The partial derivatives 04¢/00, 0X¢ /00, 0C¢/0d, 0D /04, etc. can be found quite easily from the ex-
pressions given in Egs. (16)—(18). Thus, evaluating the expression given in Eq. (37) at the point 6 =0
provides the following relation:
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Terms in this relation that are evaluated at the point 6 = 0 correspond to those of the periodic specimen.
Therefore, for any arbitrary element, e, the following relations must hold:

[0&°

= ¢y =constant Ve e {1,...,N.}, (39)
L 04° [50].
(06| ]

=¢; =constant Vc € {l,...,N.}, (40)
L 00 [520],
[0&°
x|, = ¢, =constant Ve e {1,...,N.}, (41)
[06°|

= cc =constant Ve € {1,...,N.}, (42)
_aCe 0=0d ¢
[0&°
— = ¢p =constant Ve € {1,...,N.}. (43)
_aDe 0=0d ¢

In other words, since each term on the left-hand sides of Eqs. (39)-(43) is evaluated at the point 6 = 0, any
term evaluated for a given structural element of a particular unit cell has the identical value as the cor-
responding term evaluated for the corresponding element in each of the remaining unit cells throughout the
entire specimen, and hence, is constant for all ¢ € {1,...,N_.}.

Furthermore, for certain classes of perturbation shapes, the following identities involving the parameters
that characterize the shapes of the microstructural perturbations can be established:

Sl =

c=1 c

00

], = i [re]. = Z 7], =-=0 Vee{l,...,N.}. (44)

00
=1 c=1 c=1

These relations hold, for example, if # < H and the parameters 7, r¢, r¢, 74, etc., are statistically random
(see, for example, Mendenhall et al. (1990)), or if the parameters 4, ¢, r¢., 74, etc., are themselves periodic
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in nature with a period equal to an integral fraction of the overall structural dimension, H. Many other
examples of perturbations shapes can be given, for which the identities provided in Eq. (44) hold, and in
general, many types of structural and material imperfections that arise from errors induced during manu-
facturing processes satisfy Eq. (44).

Since the terms in relations (39)—(43) are constant, the identities given in Eq. (44) can be used to obtain
the following additional identities:

s [os| - e
0A° Aerfl:| :CAA‘)ZI:FZ]CEO Vee{l,...,Ne}, (45)
c=1 L 0=0 c c=1
Ne 1 N,
(o] ok ] :
- . hri| = cicih i, =0 Vee {l,...,N,}, (46)
= LOF 500X oy T, ; 7]
Ne ‘age B . Ne
aCe CereC:| :CCCeZ [}’g}c EO Ve € {17.‘.,Ne}, (47)
=1 L 0=0 c c=1
Ne [ o&e 3 3 Ne
ﬁ DerZ:| :CDDeZ I:VB:IC EO VeE {17"'7Ne}' (48)
c=1 L 0=0 c c=1

In other words, the identities provided in Eq. (44) can be used to demonstrate that each quantity on the left-
hand sides of Eqgs. (45)-(48) is identically equal to zero. Consequently, substitution of the identities pro-
vided by Eqgs. (45)-(48) into Eq. (38) and substitution of the result into Eq. (35) provides the following
identity for the first-order term in the expansion of the macroscopic strain energy density:

aw ow
— = —— =0. 49
do |y 00 i (49)
In exactly the same manner, it can be shown that
2
Citid VZ —0, (50)
65 0=0
and therefore
2 2
w oW
awl _ du (51)
do* |s=p Oudd do|,_,
3.3. Influence on the macroscopic properties
The result of the preceding analysis is that Eq. (20) may be reduced to
8 d'w
W=Wot5—| +0)<W, (52)
2.dé” s

which, through the definitions provided by Egs. (14) and (15), naturally leads to the following relations:

& dnn

=1, + 3 aF +0(58%) (53)

0=0
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and
5 d’L
2 48 |5y

The main conclusions reached through this analysis are summarized best by Eqs. (49)—(51), or alter-
natively by Egs. (52)—(54). These equations state quite simply that the first-order term in the expansion of
the macroscopic strain energy density is identically equal to zero and that the corresponding second-order
term is less than zero prior to initial bifurcation in the principal equilibrium solution. In other words, the
influence of perturbations in microstructural periodicity on the macroscopic properties of initially periodic
media are second order in the perturbation amplitude parameter and the energy-carrying capacities of these
structures and materials are decreased by these microstructural perturbations. These results, of course, rely
on the assumption that the solid materials under consideration are exhibiting hyperelastic behavior, and
therefore, possess a strain energy density function. Additionally, necessary and sufficient conditions for
relations (52)—(54) to hold are that the specimens under consideration possess a characteristic micro-
structural length scale that is small relative to the overall structural dimensions (i.e., that # < H and thus
e — () and that the parameters that characterize the shape of the microstructural perturbations satisfy Eq.
(44).

In the next section, the macroscopic mechanical response of discrete media with both periodic and nearly
periodic microstructures is explored numerically. A nonlinear-elastic truss structure and an elasto-plastic
honeycomb material are chosen as two particular models for study. The macroscopic response for each of
these structured media is obtained first for the case when the underlying microstructures are assumed to be
perfectly periodic. This idealized behavior is then compared to the response obtained for the same models
after perturbations in periodicity are introduced at the microstructural scale through imperfections in
geometry and material properties.

L= L|5:0 + + 0(53)- (54)

4. Numerical examples

In the previous section, consideration was given to several different classes of imperfections that may be
present in the underlying microstructures of the structural components and the solid materials currently
under investigation. It was shown that the difference between the macroscopic properties of structured
media with nearly periodic microstructures and the macroscopic properties of the corresponding, perfectly
periodic structures and materials are second order in the amplitude parameter that characterizes the
magnitude of the imperfection. These results hold for specimens comprized of hyperelastic materials, pro-
vided that the microstructures are sufficiently refined, that the imperfection shapes satisfy certain criteria
(see Section 3.2), and that the deformations remain in the hyperelastic regime of behavior. To more clearly
illustrate how these types of microstructural imperfections influence the macroscopic response of various
structured media, several numerical examples now are considered. Two particular micromechanical models
— a nonisotropic structural model and an initially isotropic cellular material model — are used to demon-
strate under which conditions the main analytical results of the previous section hold.

To quantify the influence of perturbations in microstructural periodicity on the macroscopic properties
of media with initially periodic microstructures, two dimensionless parameters are defined. First, a di-
mensionless strain energy density parameter, C, is used to measure the normalized difference in the mac-
roscopic strain energy density between models with nearly periodic microstructures and their corresponding
periodic counterparts. This dimensionless parameter is defined by

_ =W

C="Tml G3)
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where 1 is the macroscopic strain energy density of the periodic model (i.e., Wy = W (o = 0)). Similarly, a
dimensionless stress parameter, D, is used to measure the normalized difference in the first Piola—Kirchhoff
stress tensor between the nearly periodic and the perfectly periodic models. This dimensionless parameter is
defined by

_ I — T

=" (56)

where Il is the first Piola—Kirchhoff stress tensor of the periodic model (i.e., ITy = IT(6 = 0)).

It is also useful to define the limits of the two parameters, C and D, as the geometric scale parameter, ¢,
approaches zero. Denote these limits as Cy and Dy, respectively (i.e., Cy = lim,_o C and Dy = lim,_y D). The
two dimensionless parameters, C and D, and their corresponding limits, Cy and Dy, are used in this section
to quantify the effects of perturbations in microstructural periodicity on the macroscopic properties of the
elastic truss model and the aluminum honeycomb model. Since it has been shown analytically that the
influence of these perturbations is second order in the perturbation amplitude parameter, J, for media with
sufficiently refined microstructures, it is expected that, for a given load path, both C and D will converge to
nonzero, finite values as ¢ decreases. Furthermore, as dictated by the results of the previous analysis, it is
expected that each of these values will be proportional to the square of § for deformations that remain in
the hyperelastic regime of behavior.

4.1. Nearly periodic structures — nonlinear-elastic truss models

First, consider the elastic truss model shown in Fig. 1a (upper left). This model is particularly suited for
the present investigation, because it is relatively simple — involving only one-dimensional truss elements —
yet it possesses the complexity necessary to exhibit the effects of microstructural perturbations on the
resulting macroscopic properties. This micromechanical model has been used by the author in previous
investigations, and therefore, a detailed discussion of the geometry, the material properties, the element
constitutive behavior, and the prescribed boundary conditions is provided elsewhere (for a description of
this model see Schraad and Triantafyllidis, 1997a). For reasons of completeness, however, a short pre-
sentation of the salient features of this model is provided below.

Consideration is given to finite deformations of the elastic truss model, and therefore, nonlinear kine-
matic relations are required for describing the element strains. Since all nonlinear strain measures are
equivalent in one spatial dimension, for convenience, the Lagrangian strain is adopted. This element strain
measure, denoted by €¢, is given by

=3 (5) -] 7

where L¢ and /¢ are the lengths of the structural element in the reference (i.e., the undeformed) and the
current (i.e., the deformed) configurations, respectively. The element strain energy, &° is taken to be

8 = AEL () + (sgnea(¢) + ()], (58)

where A° = .o/°¢ is the cross-sectional area of the structural element, £¢ is the initial tangent modulus of the
element material, and the quantities a® and b° are element material constants. Note that the cross-sectional
area of each structural element scales with the size of the unit cell to provide a macroscopic stress—strain
response that is independent of the geometric scale parameter, ¢ — for models with perfectly periodic mi-
crostructures. The following values of the material properties are used in the present investigation: .o7¢ = 1,
E¢=1,a°=—7/2, and b* = 7/2. These constants are adopted for all subsequent calculations involving the
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periodic model, because they give rise to a macroscopic stress—strain response with a broad nonlinear range
and a maximum load at a finite level of strain.

The truss model is subjected to fully prescribed displacement boundary conditions corresponding to
uniaxial tension without transverse contraction. This particular load path does not provide a unique de-
monstration of the model’s behavior, but rather is chosen simply as a matter of convenience and for pur-
poses of illustration. The displacement vector for each constrained boundary node is given by

uly.op = {4X) O}Ta (59)

where X = {X;, X, } represents the nodal position vector, 0V denotes the boundary of the specimen, and 4 is
the macroscopic displacement parameter that characterizes the level of deformation to which the specimen
is subjected. Thus, for the case of uniaxial tension without transverse contraction, the truss model is
subjected to a state of biaxial stress with principal stresses that are both positive.

The principal stress—strain solution is obtained first for a model with periodic microstructure and then
for various models with small perturbations in microstructural periodicity. Random perturbations in the
element cross-sectional areas, the element tangent moduli, and the element nodal positions are all con-
sidered (see Section 3.1 for a more detailed discussion of how these microstructural perturbations are in-
troduced into the models). The solutions for both the periodic model and the nearly periodic models are
compared and the convergence of the dimensionless parameters, C and D, is examined, as the geometric
scale parameter, ¢, decreases. The dependence of the corresponding limits, Cy and Dy, on the perturbation
amplitude parameter, J, is also explored. Additional comparisons are made to provide a more thorough
understanding of the manner in which these perturbations influence the macroscopic response of the model.
And finally, the actual stress—strain behavior for both the periodic and the nearly periodic truss models is
investigated and appropriate comparisons are made.

So first, consider the convergence of the dimensionless strain energy density parameter, C, and the di-
mensionless stress parameter, D, as the geometric scale parameter, ¢, decreases (i.e., as the microstructure of
the truss model becomes more refined). It is expected that C and D will vary most widely when the mi-
crostructure is relatively coarse (i.e., when ¢ is large) and will converge to a relatively constant value as the
microstructure is refined. This outcome seems reasonable, since the first-order term in the expansion of the
macroscopic strain energy density, W, approaches zero as the geometric scale parameter approaches zero.
Indeed, Fig. 2a and b, respectively, shows that C and D converge to relatively constant values as ¢ ap-
proaches zero (i.e., as 1/¢ increases).

In Fig. 2a, the dimensionless strain energy density parameter is determined for various nearly periodic
truss models with values of the geometric scale parameter ranging from 0.333 (N, = 9) to 0.0333 (N. = 900).
To better represent the distribution of behavior, 10 different microstructural perturbations are considered
for each value of ¢. Each perturbation corresponds to a different random shape. In addition, for each
perturbation shape, three different values of the perturbation amplitude parameter, o, are considered.
Results are presented for levels of deformation corresponding to 4 = 0.05.

The numerical values to which C converges as ¢ approaches zero are represented by solid, dotted, and
dashed lines for values of d corresponding to 0.08, 0.16, and 0.24, respectively. As expected, the results show
that these constant values increase as ¢ increases. The variations in C that are present for large values of ¢
are due to variations in the first-order terms in the expansions of W. As the geometric scale parameter
decreases, however, this first-order effect diminishes. Therefore, for suitably small values of ¢, the variations
in C become due solely to differences between the second-order terms in the expansions of W for the various
perturbed microstructures that are considered for the elastic truss models under investigation. In other
words, the variations are due to differences in microstructural geometry. The convergence of the dimen-
sionless strain energy density parameter is quite rapid, however, and for values of ¢ smaller than ap-
proximately 0.1 (1/¢ ~ 10), the value of C remains relatively constant.
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Fig. 2. Convergence of: (a) the dimensionless strain energy density parameter; and (b) the dimensionless stress parameter, as the
microstructure of the elastic truss model is refined. The lines represent the limiting values of the two parameters as ¢ — 0.

In Fig. 2b, the dimensionless stress parameter is determined for exactly the same values of the geometric
scale parameter and perturbation amplitude parameter and for the same random perturbation shapes.
Similar to the behavior of the dimensionless strain energy density parameter, D converges to relatively
constant values as ¢ approaches zero. Again, the numerical values to which D converges as ¢ approaches
zero are represented by solid, dotted, and dashed lines for values of 6 corresponding to 0.08, 0.16, and 0.24,
respectively. And, as expected, the results show that these constant values increase as J increases (since
the first Piola—Kirchhoff stress tensor, I, is derived from the macroscopic strain energy density). Again, the
variations in D for small values of ¢ are due solely to differences between the second-order terms in the
expansions of IT (or W) for models with different perturbation shapes.

The influence of these perturbations in microstructural periodicity on the macroscopic properties of the
truss model is characterized best by examining the dependence of the limits of the two dimensionless pa-
rameters on the perturbation amplitude parameter. In Fig. 3a and b, C; and D, are plotted as functions of
the perturbation amplitude parameter for truss models with ¢ = 0.04 and for values of ¢ ranging from 0.00
to 0.25. For each value of ¢, 10 different random perturbation shapes are considered. And again, results are
presented for levels of deformation corresponding to 4 = 0.05.

It becomes evident from these results that the limits of both the dimensionless strain energy density
parameter and the dimensionless stress parameter are influenced by the perturbation amplitude parameter
only to second order, as suggested by the quadratic dependence of Cy and Dy on . Recall that these results
can be predicted directly from Egs. (52) and (53) for specimens of sufficient microstructural refinement (i.e.,
sufficient to guarantee that Eq. (44) holds).

In addition to predicting the second-order influence of perturbations in periodicity on the macroscopic
properties, Eq. (52) also predicts that these perturbations lead to a decrease in the macroscopic strain
energy density for a given level of deformation. In Fig. 4a, the normalized value of W (i.e., the ratio of W
for a truss model with microstructural perturbations to W for the corresponding periodic model) is plotted
as a function of the perturbation amplitude parameter for truss models with e = 0.04. Again, for each value
of 0, 10 different random perturbation shapes are considered. The results clearly illustrate the detrimental
effect of microstructural perturbations on the macroscopic strain energy density of these structures. The
damaging influence of these perturbations becomes even more apparent when consideration is given to the
effects on the macroscopic stress response of the structure.
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Fig. 3. Limiting values of: (a) the dimensionless strain energy density parameter; and (b) the dimensionless stress parameter, plotted as
functions of the perturbation amplitude parameter. The data averages and the corresponding quadratic fit to these data are represented
by the solid and dotted curves, respectively.

In Fig. 4b, the ratio of macroscopic stress tensor norms corresponding to the results presented in Fig. 4a
is plotted as a function of the perturbation amplitude parameter. Again, the results show that any per-
turbation in periodicity has a detrimental effect on the macroscopic stress norm for a given level of de-
formation. These results simply indicate that a truss model with nearly periodic microstructure has a lower
overall load-carrying capacity than the corresponding periodic model.

Despite the detrimental effect of perturbations in microstructural periodicity on the macroscopic stress
tensor norm, the influence of these perturbations on the individual components of the stress tensor depends
on the actual perturbation shape and the direction of macroscopic loading. In Fig. 5, the normalized stress
tensor components (i.e., the ratios of I1;; for a truss model with nearly periodic microstructure to I1;; for the
corresponding periodic model) are plotted versus the perturbation amplitude parameter for truss models
with € = 0.04. The results presented here correspond directly to those presented in Fig. 4b. It is clearly
evident from these results that the given microstructural perturbations cause a decrease in one component
of the macroscopic stress tensor and an increase in the other (recall that the deformation under conside-
ration is uniaxial, and therefore, leads to negligible values for the macroscopic shear stress components,
I}, and I1,). Depending on the prescribed loading conditions and the shapes of the microstructural
perturbations, the individual components of Il may be affected in many different ways. The influence on the
macroscopic response, however, is always detrimental to the overall “performance” of the structure and
second order in the perturbation amplitude parameter.

Finally, the most illuminating illustration of how perturbations in microstructural periodicity influence
the macroscopic properties of the elastic truss structure may be provided by comparing the actual mac-
roscopic stress response of a nearly periodic model with the behavior of the corresponding periodic model.
In Fig. 6, the macroscopic stress tensor components (normalized with respect to the initial tangent modulus
of the perfectly periodic material), are plotted as functions of A for truss models with both periodic and
nearly periodic microstructures and with ¢ = 0.04. For the nearly periodic model, a rather large pertur-
bation amplitude parameter, 6 = 0.24, is prescribed to better demonstrate the resulting effects. The results
illustrate that the effect of the microstructural perturbations on the macroscopic stress response is relatively
small — even for the large value of § that is prescribed. These small effects, however, are consistent with the
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Fig. 4. Normalized values of: (a) the macroscopic strain energy density; and (b) the macroscopic stress tensor norm, plotted as
functions of the perturbation amplitude parameter.
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Fig. 5. Normalized values of the macroscopic stress tensor components plotted as functions of the perturbation amplitude parameter.

predicted second-order influence and may be misleading, as the stress level at failure may be affected sig-
nificantly (see Schraad and Triantafyllidis, 1997b).

Note that the macroscopic stress response for the periodic model is plotted for a range of deformations
corresponding to 0.0 < 4<0.2, however, the behavior for the nearly periodic model is plotted only for
those deformations that occur prior to initial failure (here, initial failure is defined as the occurrence of the
first bifurcation or buckling-type instability in the periodic model and the corresponding limit or maximum
load in the nearly periodic model). Also note that, despite the relatively minor effect on the macroscopic
stress for a given level of deformation, the stress at failure is significantly lower than the maximum stress
attained by the periodic structure. Lastly, notice that one component of the macroscopic stress tensor
experiences a decrease due to the perturbations in periodicity, but that the other component experiences an
increase (these results correspond to those presented in Fig. 5). Keep in mind, however, that the total
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Fig. 6. Macroscopic stress response for elastic truss models with both periodic and nearly periodic microstructures subjected to uniaxial
tension with no lateral contraction.

macroscopic strain energy density corresponding to a given level of deformation, by definition, experiences
a decrease due to microstructural perturbations.

4.2. Nearly periodic cellular materials — aluminum honeycomb models

Next, consider a material with a slightly more complicated underlying microstructure — specifically, an
aluminum honeycomb with a two-dimensional, hexagonal-lattice microstructure similar to that shown in
Fig. 1a (lower right). Due to the elasto-plastic nature of the aluminum and the bending of the thin cell walls
that results during in-plane compressive loadings of these materials, the mechanical response at the mi-
crostructural scale is much more complicated than the corresponding behavior exhibited by the elastic truss
model that was previously analyzed. In the reference configuration, the microstructure of the aluminum
honeycomb material consists of a regular hexagonal lattice. If the nominal hexagonal cell size is denoted by
¢, then the length of each cell wall is given by ¢//3.

Typically, metallic honeycombs are manufactured by bonding strips of the parent material together at
specific locations and then pulling the ensemble apart into the appropriate configuration. If the thickness of
the aluminum strips used in this process is denoted by ¢, then the thickness of each of the vertical cell walls
of the honeycomb material is given by 2¢, and the thickness of the remaining cell walls is given by ¢.
Nevertheless, each of the cell walls is very thin, and when subjected to in-plane, compressive stress states,
deforms essentially through bending. Hence, the cell walls are idealized as nonlinear beams that may un-
dergo arbitrarily large displacements and rotations. The corresponding beam theory that is used to model
this behavior is a generalization of the elastica beam theory that is due to Euler. The present theory,
however, accounts for axial deformations as well. This theory has been proposed elsewhere (see, for ex-
ample, Love, 1944; Antman, 1968), and therefore, is not presented here.

An elasto-plastic constitutive law is used to describe the relationship between the element axial stress
component (i.e., the only nonnegligible stress component), ¢¢, and the corresponding element axial strain
component, €. This constitutive behavior is modeled using a standard bilinear relationship given by

. Ee for € e,
T = {Eey —&—E,(e" — ey) for € > ¢, (60)
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where E represents the initial tangent modulus of the material, €, is the value of axial strain at the onset of
plasticity, and E, denotes the post-yield, tangent modulus of the material.

The following values of the material constants are used in the present investigation: E = 69 GPa,
E, = 690 MPa, and ¢, = 0.00423, and these material properties are held constant for all subsequent cal-
culations involving the honeycomb model. This bilinear constitutive relationship matches the experimen-
tal results reported by Papka and Kyriakides (1994), which correspond to measurements obtained from
thin strips of aluminum taken from the honeycomb specimens used in their investigation. This stress—strain
relationship holds for the case of monotonic loading, however, elastic unloading also is accounted for by
including an appropriate kinematic hardening response law. It should be noted at this point that, as op-
posed to both the geometric and the material property perturbations that were considered for the truss
model, only the geometry of the hexagonal lattice is perturbed for the honeycomb model.

The aluminum honeycomb model is subjected to in-plane, compressive stress states corresponding to
uniaxial compression in a direction that is parallel to the thicker cell walls. The macroscopic first Piola—
Kirchhoff stress tensor, I, is given by

I [0 O
= [o A]’ (61)

where A denotes the macroscopic force parameter and 4, and 4, are the dimensions of the honeycomb
model in the reference configuration. For the loading conditions presently considered, the macroscopic
force parameter, 4, may reach a maximum value. Consequently, the work-conjugate quantity, denoted by
A, is prescribed instead. This macroscopic displacement parameter is given by

A= (B~ Dh, (€2

where F, is the only relevant component of the macroscopic deformation gradient tensor, and where /4 is
the out-of-plane thickness of the honeycomb model (here, taken to be unity). Thus, by prescribing the
work-conjugate quantity, 4, the particular load path of interest may be followed in a manner that permits
analysis of deformations beyond the maximum load. As with the elastic truss model, the aluminum hon-
eycomb model has been used by the author in previous investigations. For a more complete description of
this model, including details concerning the numerical calculations implemented in the solution of the
equilibrium equations, see Triantafyllidis and Schraad (1998).

Since it is ultimately the macroscopic stress state that is of primary concern in the vast majority of
engineering analyses, the results for the aluminum honeycomb model focus on the influence of perturba-
tions in microstructural periodicity on the dimensionless stress parameter, D, and on the corresponding
limit, Dy. As in the case of the truss model, the principal stress—strain solution for the honeycomb material
is obtained first for a model with perfectly periodic microstructure and then for various models with small
perturbations in periodicity (again, see Section 3.1 for a more detailed discussion of how these micro-
structural perturbations are introduced into the models). The solutions for both the periodic model and the
nearly periodic models are compared and the convergence of the dimensionless stress parameter is exam-
ined, as the geometric scale parameter, ¢, decreases. The dependence of the corresponding limit on the
perturbation amplitude parameter, 9, is also explored. Additional comparisons are made to provide a more
thorough understanding of the manner in which these perturbations affect the macroscopic response of the
model. And finally, the actual stress—strain behavior for both the periodic and the nearly periodic hon-
eycomb models is investigated and appropriate comparisons are made.

So first, consider the convergence of the dimensionless stress parameter, D, as the geometric scale pa-
rameter, ¢, decreases (i.e., as the microstructure of the honeycomb model becomes more refined). Similar to
the results presented in Fig. 2a and b for the truss model, Fig. 7a and b shows that D converges to a
relatively constant value as ¢ approaches zero.
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Fig. 7. Convergence of the dimensionless stress parameter as the microstructure of the aluminum honeycomb model is refined. Results
are presented for levels of deformation corresponding to: (a) 4 = 0.015; and (b) 4 = 0.060. The solid lines represent limiting values of
this parameter as ¢ — 0.

In Fig. 7a, the dimensionless stress parameter is determined for various nearly periodic honeycomb
models with values of the geometric scale parameter ranging from 0.333 (N, = 9) to 0.067 (N. = 225). To
better represent the distribution in material behavior, five different microstructural perturbations are
considered for each value of ¢. Each perturbation corresponds to a different random shape with § = 0.10.
Results are presented for a level of deformation corresponding to 4 = 0.015. At this level of deformation,
the behavior of the honeycomb material is still in the linear-elastic regime.

The results are very similar to those presented for the truss model. As expected, the dimensionless stress
parameter converges to a relatively constant value as ¢ approaches zero (i.e., as N, increases). Here, the solid
line represents the value of Dy, which simply is determined for a sufficiently large value of N.. Again, the
variation in D for each value of ¢ indicates that each perturbation shape causes a slightly different mac-
roscopic stress response. The variation in the data for the honeycomb model is greater than that for the
truss model, since the geometric perturbations in the honeycomb microstructure can produce significantly
different bending stresses in local areas of the model. These differences result in stress responses at the
macroscopic scale that reach the onset of plasticity at different points in the macroscopic strain history. As
expected, however, the variations in the data for large values of ¢, which are due to variations in the first-
order terms in the expansions of the macroscopic stress tensor Il, decrease as ¢ approaches zero. For small
enough values of ¢ the variations in D are due solely to variations in the second-order terms in the ex-
pansions of II.

In Fig. 7b, the same honeycomb models are evaluated, however, the dimensionless stress parameter is
evaluated at a level of deformation corresponding to 4 = 0.060. At this level of deformation, the onset of
plasticity has been reached and the behavior of the honeycomb material has proceeded well into the plastic
regime. Consequently, the material response is no longer hyperelastic, and therefore, it cannot be expected
that the dependence of D on the geometric scale parameter will be the same as for the case of purely elastic
deformation. At this point in the deformation history, the average value of D remains relatively constant as
¢ decreases. The relatively constant values of D vary only slightly from the value that is determined for the
case when ¢ approaches zero (this value is represented by the solid line). Again, these variations are due to
differences in the stress response that are produced by the different microstructural geometries of the
perturbed honeycomb models. Notice, however, that the values of D at this more progressed stage of
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deformation are approximately twice as high as the values determined in the linear-elastic range of de-
formation. These results do indeed indicate a difference in the scale dependence of the material between the
reversible and irreversible regimes of behavior.

Again, as in the case of the truss model, the influence of these perturbations in microstructural peri-
odicity on the macroscopic properties of the honeycomb model is characterized best by examining the
dependence of the limit of the dimensionless stress parameter on the perturbation amplitude parameter. In
Fig. 8a and b, D, is plotted as a function of the perturbation amplitude parameter for aluminum honey-
comb models with ¢ = 0.0667 and for values of  ranging from 0.00 to 0.10. Here, to expedite the numerical
computations, only one perturbation shape is considered for each value of . In Fig. 8a, results are pre-
sented for a level of deformation corresponding to 4 = 0.015, whereas in Fig. 8b, results are presented for a
level of deformation corresponding to 4 = 0.060.

It is quite evident from these results that the limit of the dimensionless stress parameter is influenced by
the perturbation amplitude parameter only to second order (i.e., Dy ~ O(6%)) for deformations occurring
prior to the onset of plasticity, as suggested by the quadratic dependence of D, on ¢ represented in Fig. 8a.
The nature of this dependence changes, however, as the level of deformation increases past the onset of
plasticity. In Fig. 8b, this dependence, while nonlinear for very small values of ¢, is linear (i.e., Dy ~ O(J))
for most of the perturbation amplitude parameter range. As the level of deformation increases and as ¢
increases, this dependence becomes strictly linear. In any event, for sufficiently refined honeycomb models,
the second-order dependence of D, on ¢ is only valid for levels of deformation occurring prior to the onset
of plasticity in the parent material.

This same second-order dependence is observed when the individual components of the macro-
scopic stress tensor are examined. In Fig. 9a and b, the nonzero component of the macroscopic first Piola—
Kirchhoff stress tensor, Iy, is plotted as a function of the perturbation amplitude parameter for the same
model parameters and levels of deformation as for the results presented in Fig. 8a and b. Again, for de-
formations occurring prior to the onset of plasticity, the dependence of 1y on ¢ is second order. This
dependence, however, becomes first order as the level of deformation increases past this limiting point.
Note, however, that the perturbations in microstructural periodicity in the honeycomb material produce an
increase in ITy for deformations in the linear-elastic range, yet a decrease in this stress component is
produced as the deformations become more extreme. (Recall that the macroscopic strain energy density
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Fig. 8. Limiting values of the dimensionless stress parameter plotted as a function of the perturbation amplitude parameter for levels of
deformation corresponding to: (a) 4 = 0.015; and (b) 4 = 0.060. The solid lines represent quadratic and linear fits to these data.
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Fig. 9. Normalized values of the macroscopic stress tensor components plotted as functions of the perturbation amplitude parameter
for levels of deformation corresponding to: (a) 4 = 0.015; and (b) 4 = 0.060.

experiences a decrease due to perturbations in periodicity, as dictated by Eq. (52).) The slight increase in
I1,, for small deformations is possible, because the other components of stress, which are identically zero
for the periodic case, are nonzero for the model with microstructural perturbations. The results demon-
strate the highly nonlinear nature of the honeycomb material response.

Finally, the most illuminating illustration of how perturbations in microstructural periodicity influence
the macroscopic properties of the aluminum honeycomb material may be provided by comparing the actual
macroscopic stress response of a nearly periodic model with the behavior of the corresponding periodic
model. In Fig. 10, the stress response for a honeycomb model with ¢ = 0.0667 (N. = 225) and 6 = 0.10 is
compared to the behavior obtained for its counterpart with periodic microstructure. Here, the only non-
negligible component of the macroscopic stress tensor is plotted. The influence of the microstructural
perturbations is indeed very small (i.e., O(6%)) for deformations occurring prior to the onset of plasticity,
yet becomes substantially more pronounced once this level of deformation is reached. Note that the re-
sponse is plotted for deformations occurring at the level of the load plateau, which is typically used to
determine the practical load-carrying capacity of materials with cellular microstructures. Despite the sec-
ond-order influence in the linear-elastic range of deformation, the influence of the perturbations along this
load plateau becomes first order. For a perturbation amplitude of 10%, one sees roughly a 10% decrease in
the load-carrying capacity of the material. The results presented here, demonstrate the importance of
considering microstructures that are not perfectly periodic when analyzing structures and materials to
determine their failure loads.

5. Concluding remarks

The results of many engineering analyses involving structured media are based on simplifying as-
sumptions concerning the periodicity of the underlying microstructures. For example, homogenization
techniques that are used to estimate the macroscopic properties of composite materials, and many struc-
tural theories that have been developed to predict the macroscopic response of structural components and
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Fig. 10. Macroscopic stress response for aluminum honeycomb models with both periodic and nearly periodic microstructures sub-
jected to uniaxial compression.

cellular materials, assume that the relevant underlying microstructures are perfectly periodic. The structural
components and solid materials that are used in actual engineering applications, however, necessarily
include microstructural irregularities and defects that result from imperfect manufacturing processes,
impurities in materials, and various other types of microscopic and macroscopic damage. From a
micromechanics point of view, natural questions arise regarding the influence of these microstructural
imperfections on the predicted macroscopic behavior of these structures and materials.

The investigation presented here centers attention on discrete media with periodic and nearly periodic
microstructures. For structural trusses, structural frames, and cellular materials, the mechanical response at
the macroscopic scale is, in general, easy to define, and the corresponding behavior at the microstructural
scale can be characterized in terms of the parameters that govern the stress—strain response of simple, one-
dimensional, structural elements. Of particular interest to the present work are structures and solids
comprized of materials for which a strain energy density exists — namely, hyperelastic materials. For hy-
perelastic materials, the macroscopic stresses and the macroscopic incremental moduli can be derived from
the macroscopic strain energy density. Analysis, therefore, is focused on the effect of perturbations in
microstructural periodicity on the macroscopic strain energy density. More specifically, the macroscopic
strain energy density is expanded asymptotically about the periodic solution, and the influence of micro-
structural perturbations on each term in the expansion is examined.

Following this general analytical approach, two main conclusions are reached. First, the first-order term
in the expansion of the macroscopic strain energy density is identically equal to zero. And second, for a
given level of deformation, the macroscopic strain energy densities for media with nearly periodic micro-
structures are necessarily less than the strain energy densities for the corresponding periodic structures and
materials. These analytical results hold for discrete structured media exhibiting hyperelastic behavior,
provided that the microstructural length scales are small relative to the overall structural or specimen di-
mensions, and that the parameters that characterize the shapes of the microstructural imperfections satisfy
certain criteria (e.g., statistically random imperfections).

The results of several numerical examples are used to highlight the main points of the analytical de-
velopments. A nonlinear-elastic truss structure and an elasto-plastic (aluminum) honeycomb material are
chosen as two particular models for study. The macroscopic response for each of these structured media is
obtained first for the case when the underlying microstructures are modeled as perfectly periodic. For the
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truss model, this idealized behavior can be obtained analytically, however, for the honeycomb model, finite-
element analysis is used to determine the macroscopic response. The idealized behavior is compared then to
the response obtained numerically for the same models after small perturbations in geometry and material
properties are introduced into the models at the microstructural scale. The results show that, indeed, the
macroscopic properties for the models with nearly periodic microstructures and the macroscopic properties
of the corresponding periodic models differ by O(d%), where § is the perturbation amplitude parameter. The
results also show that the energy-carrying capacities of these models are decreased when perturbations in
periodicity are introduced into the initially periodic microstructures. These numerical results hold when the
microstructures of the models are sufficiently refined and for deformations that occur prior to the onset of
failure (e.g., a limit load or the onset of plastic deformation). Results for the aluminum honeycomb model
show further that the influence of microstructural perturbations on the macroscopic response becomes first
order once the level of deformation reaches the onset of plasticity and leaves the hyperelastic regime of
behavior.

The implications of these results can be summarized quite briefly. For structured media comprized of
hyperelastic materials, with sufficiently refined, nearly periodic microstructures (i.e., microstructures with
small perturbations in periodicity), analysis techniques that are based on assumptions of strict periodicity
will not involve significant inaccuracies in macroscopic property predictions, provided that the defor-
mations remain in the hyperelastic regime of behavior. Significant inaccuracies in material property pre-
dictions may develop, however, for media with highly irregular or random microstructures, for
microstructures with characteristic length scales that are not small compared to the overall structural
dimensions, for microstructures with systematic (i.e., nonrandom) imperfections in periodicity, or for media
that are subjected to deformations approaching the onset of failure.

Future research will focus on a generalization of the current work to continuous media with nearly
periodic microstructures (e.g., composite materials). Some attention also will be given to materials that
cannot be characterized as hyperelastic, as well as to materials characterized with rate-dependent con-
stitutive laws. It is hoped that the lessons learned through these investigations will lead to the development
of improved continuum theories for microstructured materials — theories that ultimately will use infor-
mation at the microstructural scale to provide better methods for estimating the macroscopic properties of
both discrete and continuous structured media.
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